Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int Microbiol ; 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37615902

RESUMO

Protists frequently host diverse bacterial symbionts, in particular those affiliated with the order Holosporales (Alphaproteobacteria). All characterised members of this bacterial lineage have been retrieved in obligate association with a wide range of eukaryotes, especially multiple protist lineages (e.g. amoebozoans, ciliates, cercozoans, euglenids, and nucleariids), as well as some metazoans (especially arthropods and related ecdysozoans). While the genus Paramecium and other ciliates have been deeply investigated for the presence of symbionts, known members of the family "Candidatus Paracaedibacteraceae" (Holosporales) are currently underrepresented in such hosts. Herein, we report the description of "Candidatus Intestinibacterium parameciiphilum" within the family "Candidatus Paracaedibacteraceae", inhabiting the cytoplasm of Paramecium biaurelia. This novel bacterium is almost twice as big as its relative "Candidatus Intestinibacterium nucleariae" from the opisthokont Nuclearia and does not present a surrounding halo. Based on phylogenetic analyses of 16S rRNA gene sequences, we identified six further potential species-level lineages within the genus. Based on the provenance of the respective samples, we investigated the environmental distribution of the representatives of "Candidatus Intestinibacterium" species. Obtained results are consistent with an obligate endosymbiotic lifestyle, with protists, in particular freshwater ones, as hosts. Thus, available data suggest that association with freshwater protists could be the ancestral condition for the members of the "Candidatus Intestinibacterium" genus.

2.
Front Microbiol ; 12: 791615, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35087493

RESUMO

The role of bacterial endosymbionts harbored by heterotrophic Paramecium species is complex. Obligate intracellular bacteria supposedly always inflict costs as the host is the only possible provider of resources. However, several experimental studies have shown that paramecia carrying bacterial endosymbionts can benefit from their infection. Here, we address the question which endosymbionts occur in natural paramecia populations isolated from a small lake over a period of 5 years and which factors might explain observed shifts and persistence in the symbionts occurrence. One hundred and nineteen monoclonal strains were investigated and approximately two-third harbored intracellular bacteria. The majority of infected paramecia carried the obligate endosymbiotic "Candidatus Megaira polyxenophila", followed by Caedimonas varicaedens, and Holospora undulata. The latter was only detected in a single strain. While "Ca. M. polyxenophila" was observed in seven out of 13 samplings, C. varicaedens presence was limited to a single sampling occasion. After the appearance of C. varicaedens, "Ca. M. polyxenophila" prevalence dramatically dropped with some delay but recovered to original levels at the end of our study. Potential mechanisms explaining these observations include differences in infectivity, host range, and impact on host fitness as well as host competitive capacities. Growth experiments revealed fitness advantages for infected paramecia harboring "Ca. M. polyxenophila" as well as C. varicaedens. Furthermore, we showed that cells carrying C. varicaedens gain a competitive advantage from the symbiosis-derived killer trait. Other characteristics like infectivity and overlapping host range were taken into consideration, but the observed temporal persistence of "Ca. M. polyxenophila" is most likely explained by the positive effect this symbiont provides to its host.

3.
Results Probl Cell Differ ; 69: 105-135, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33263870

RESUMO

The chapter describes the exceptional symbiotic associations formed between the ciliate Paramecium and Holospora, highly infectious bacteria residing in the host nuclei. Holospora and Holospora-like bacteria (Alphaproteobacteria) are characterized by their ability for vertical and horizontal transmission in host populations, a complex biphasic life cycle, and pronounced preference for host species and colonized cell compartment. These bacteria are obligate intracellular parasites; thus, their metabolic repertoire is dramatically reduced. Nevertheless, they perform complex interactions with the host ciliate. We review ongoing efforts to unravel the molecular adaptations of these bacteria to their unusual lifestyle and the host's employment in the symbiosis. Furthermore, we summarize current knowledge on the genetic and genomic background of Paramecium-Holospora symbiosis and provide insights into the ecological and evolutionary consequences of this interaction. The diversity and occurrence of symbioses between ciliates and Holospora-like bacteria in nature is discussed in connection with transmission modes of symbionts, host specificity and compatibility of the partners. We aim to summarize 50 years of research devoted to these symbiotic systems and conclude trying to predict some perspectives for further studies.


Assuntos
Núcleo Celular/microbiologia , Holosporaceae , Paramecium/microbiologia , Simbiose , Holosporaceae/genética , Paramecium/genética
4.
Front Microbiol ; 11: 1425, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32733401

RESUMO

"Candidatus Megaira polyxenophila" is a recently described member of Rickettsiaceae which comprises exclusively obligate intracellular bacteria. Interestingly, these bacteria can be found in a huge diversity of eukaryotic hosts (protist, green algae, metazoa) living in marine, brackish or freshwater habitats. Screening of amplicon datasets revealed a high frequency of these bacteria especially in freshwater environments, most likely associated to eukaryotic hosts. The relationship of "Ca. Megaira polyxenophila" with their hosts and their impact on host fitness have not been studied so far. Even less is known regarding the responses of these intracellular bacteria to potential stressors. In this study, we used two phylogenetically close species of the freshwater ciliate Paramecium, Paramecium primaurelia and Paramecium pentaurelia (Ciliophora, Oligohymenophorea) naturally infected by "Ca. Megaira polyxenophila". In order to analyze the effect of the symbiont on the fitness of these two species, we compared the growth performance of both infected and aposymbiotic paramecia at different salinity levels in the range of freshwater and oligohaline brackish water i.e., at 0, 2, and 4.5 ppt. For the elimination of "Ca. Megaira polyxenophila" we established an antibiotic treatment to obtain symbiont-free lines and confirmed its success by fluorescence in situ hybridization (FISH). The population and infection dynamics during the growth experiment were observed by cell density counts and FISH. Paramecia fitness was compared applying generalized additive mixed models. Surprisingly, both infected Paramecium species showed higher densities under all salinity concentrations. The tested salinity concentrations did not significantly affect the growth of any of the two species directly, but we observed the loss of the endosymbiont after prolonged exposure to higher salinity levels. This experimental data might explain the higher frequency of "Ca. M. polyxenophila" in freshwater habitats as observed from amplicon data.

5.
Sci Rep ; 10(1): 9727, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32546745

RESUMO

Interest in host-symbiont interactions is continuously increasing, not only due to the growing recognition of the importance of microbiomes. Starting with the detection and description of novel symbionts, attention moves to the molecular consequences and innovations of symbioses. However, molecular analysis requires genomic data which is difficult to obtain from obligate intracellular and uncultivated bacteria. We report the identification of the Caedibacter genome, an obligate symbiont of the ciliate Paramecium. The infection does not only confer the host with the ability to kill other cells but also renders them immune against this effect. We obtained the C. taeniospiralis genome and transcriptome by dual-Seq of DNA and RNA from infected paramecia. Comparison of codon usage and expression level indicates that genes necessary for a specific trait of this symbiosis, i.e. the delivery of an unknown toxin, result from horizontal gene transfer hinting to the relevance of DNA transfer for acquiring new characters. Prediction of secreted proteins of Caedibacter as major agents of contact with the host implies, next to several toxin candidates, a rather uncharacterized secretome which appears to be highly adapted to this symbiosis. Our data provides new insights into the molecular establishment and evolution of this obligate symbiosis and for the pathway characterization of toxicity and immunity.


Assuntos
Gammaproteobacteria/genética , Paramecium/microbiologia , Simbiose/genética , Animais , Bactérias/genética , Evolução Molecular , Gammaproteobacteria/patogenicidade , Genoma Bacteriano/genética , Paramecium/genética , Fenótipo , Filogenia , Simbiose/fisiologia , Transcriptoma
6.
Eur J Protistol ; 68: 108-120, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30826731

RESUMO

Paramecium strains with the ability to kill other paramecia often harbour intracellular bacteria belonging to the genera Caedibacter or Caedimonas. Central structures of this killer trait are refractile bodies (R-bodies) produced by the endosymbionts. Once ingested by a sensitive Paramecium, R-bodies presumably act as delivery system for an unidentified toxin which causes the death of endosymbiont-free paramecia while those infected gain resistance from their symbionts. The killer trait is therefore considered as competitive advantage for the hosts of R-body producers. While its effectiveness against paramecia is well documented, the effects on other aquatic ciliates are much less studied. In order to address the broadness of the killer trait, a reproducible killer test assay considering the effects on predatory ciliates (Climacostomum virens and Dileptus jonesi) as well as potential bacterivorous Paramecium competitors (Dexiostoma campyla, Euplotes aediculatus, Euplotes woodruffi, and Spirostomum teres) as possibly susceptible species was established. All used organisms were molecularly characterized to increase traceability and reproducibility. The absence of any lethal effects in both predators and competitors after exposure to killer paramecia strongly suggests a narrow action range for the killer trait. Thus, R-body producing bacteria provide their host with a complex, costly strategy to outcompete symbiont-free congeners only.


Assuntos
Bactérias/metabolismo , Fenômenos Fisiológicos Bacterianos , Cilióforos/microbiologia , Cilióforos/fisiologia , Microbiologia da Água , Água Doce , Paramecium/microbiologia , Paramecium/fisiologia
7.
Sci Rep ; 9(1): 1179, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30718604

RESUMO

Members of the order Rickettsiales are often found in association with ciliated protists. An interesting case is the bacterial endosymbiont "Candidatus Megaira", which is phylogenetically closely related to the pathogen Rickettsia. "Candidatus Megaira" was first described as an intracellular bacterium in several ciliate species. Since then it has been found in association with diverse evolutionary distantly-related hosts, among them other unicellular eukaryotes, and also algae, and metazoa, such as cnidarians. We provide the characterization of several new strains of the type species "Candidatus Megaira polyxenophila", and the multidisciplinary description of a novel species, "Candidatus Megaira venefica", presenting peculiar features, which highlight the diversity and variability of these widespread bacterial endosymbionts. Screening of the 16S rRNA gene short amplicon database and phylogenetic analysis of 16S rRNA gene hypervariable regions revealed the presence of further hidden lineages, and provided hints on the possibility that these bacteria may be horizontally transmitted among aquatic protists and metazoa. The phylogenetic reconstruction supports the existence of at least five different separate species-level clades of "Candidatus Megaira", and we designed a set of specific probes allowing easy recognition of the four major clades of the genus.


Assuntos
Cilióforos/microbiologia , Variação Genética , Rickettsiaceae/classificação , Rickettsiaceae/isolamento & purificação , Simbiose , Organismos Aquáticos/microbiologia , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Filogenia , RNA Ribossômico 16S/genética , Rickettsiaceae/genética , Rickettsiaceae/fisiologia , Análise de Sequência de DNA
8.
FEMS Microbiol Ecol ; 94(7)2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29718229

RESUMO

Holospora and related bacteria are a group of obligate Paramecium symbionts. Characteristic features are their infectivity, the presence of two distinct morphotypes, and usually a strict specialization for a single Paramecium species as host and for a nuclear compartment (either somatic or generative nucleus) for reproduction. Holospora caryophila steps out of line, naturally occurring in Paramecium biaurelia and Paramecium caudatum. This study addresses the phylogenetic relationship among H. caryophila and other Holospora species based on 16S rRNA gene sequence comparison analyzing the type strain and seven new macronuclear symbionts. Key aspects of Holospora physiology such as infectivity, symbiosis establishment and host range were determined by comprehensive infection assays. Detailed morphological investigations and sequence-based phylogeny confirmed a high similarity between the type strain of H. caryophila and the novel strains. Surprisingly, they are only distantly related to other Holospora species suggesting that they belong to a new genus within the family Holosporaceae, here described as Preeria caryophila comb. nov. Adding to this phylogenetic distance, we also observed a much broader host range, comprising at least eleven Paramecium species. As these potential host species exhibit substantial differences in frequency of sexual processes, P. caryophila demonstrates which adaptations are crucial for macronuclear symbionts facing regular destruction of their habitat.


Assuntos
Holosporaceae/classificação , Holosporaceae/genética , Paramecium/microbiologia , Simbiose/fisiologia , Aclimatação , Animais , Sequência de Bases , Especificidade de Hospedeiro/fisiologia , Estágios do Ciclo de Vida , Filogenia , RNA Ribossômico 16S/genética
9.
Curr Microbiol ; 75(8): 1099-1102, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29693195

RESUMO

Caedibacter taeniospiralis is an obligate bacterial symbiont living in the cytoplasm of the ciliate Paramecium tetraurelia. Different studies analyzing the effect of this symbiont on its host's growth and maximal cell density arrive at contradicting conclusions, labeling it as either a parasite or a mutualist. We address the question whether extrinsic factors such as medium and food organism are responsible for the opposing results. Thus, we performed fitness assays comparing previously applied cultivation conditions. By confirming the dependency of the parasitic and mutualistic behavior of C. taeniospiralis on the cultivation conditions of its host P. tetraurelia, we demonstrate the context-dependent impact on host fitness of this bacterium.


Assuntos
Meios de Cultura/análise , Gammaproteobacteria/crescimento & desenvolvimento , Gammaproteobacteria/metabolismo , Paramecium/microbiologia , Simbiose/fisiologia
10.
Syst Appl Microbiol ; 41(3): 213-220, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29426636

RESUMO

R-body producing bacterial endosymbionts of Paramecium spp. transform their hosts into "killer" paramecia and provide them a selective advantage. This killer trait is connected to the presence of R-bodies, which are peculiar, tightly coiled protein ribbons capable of rapid unrolling. Based mainly on those two characteristics the respective obligate intracellular bacteria have been comprised in the genus Caedibacter and additional traits such as host species, subcellular localization, and R-body dimensions and mode of unrolling were used for species discrimination. Previous studies applying the full-cycle rRNA approach demonstrated the polyphyly of this assemblage. Following this approach, we obtained new sequences and in situ hybridizations for five strains of Caedibacter taeniospiralis and four strains associated to Caedibacter varicaedens and Caedibacter caryophilus. Detailed phylogenetic reconstructions confirm the association of C. taeniospiralis to Fastidiosibacteraceae and to Holosporales in case of the others. Therefore, we critically revise the taxonomy of the latter group. The high 16S rRNA gene sequence similarity among the type strains of Caedibacter varicaedens and C. caryophilus indicate that they should be classified within a single species for which we propose Caedimonas varicaedens comb. nov. owing to the priority of Caedibacter varicaedens. Moreover, we propose to establish the new family Caedimonadaceae fam. nov. to encompass Caedimonas varicaedens, "Ca. Paracaedimonas acanthamoebae" comb. nov. and "Ca. Nucleicultrix amoebiphila" within the order Holosporales.


Assuntos
Alphaproteobacteria/classificação , Proteínas de Bactérias/genética , Paramecium/microbiologia , Filogenia , Simbiose , Alphaproteobacteria/genética , DNA Bacteriano/genética , Paramecium/fisiologia , Fenótipo , RNA Ribossômico 16S/genética
11.
Genome Biol Evol ; 10(2): 646-656, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29390087

RESUMO

Endosymbiosis is a widespread phenomenon and hosts of bacterial endosymbionts can be found all-over the eukaryotic tree of life. Likely, this evolutionary success is connected to the altered phenotype arising from a symbiotic association. The potential variety of symbiont's contributions to new characteristics or abilities of host organisms are largely unstudied. Addressing this aspect, we focused on an obligate bacterial endosymbiont that confers an intraspecific killer phenotype to its host. The symbiosis between Paramecium tetraurelia and Caedibacter taeniospiralis, living in the host's cytoplasm, enables the infected paramecia to release Caedibacter symbionts, which can simultaneously produce a peculiar protein structure and a toxin. The ingestion of bacteria that harbor both components leads to the death of symbiont-free congeners. Thus, the symbiosis provides Caedibacter-infected cells a competitive advantage, the "killer trait." We characterized the adaptive gene expression patterns in symbiont-harboring Paramecium as a second symbiosis-derived aspect next to the killer phenotype. Comparative transcriptomics of infected P. tetraurelia and genetically identical symbiont-free cells confirmed altered gene expression in the symbiont-bearing line. Our results show up-regulation of specific metabolic and heat shock genes whereas down-regulated genes were involved in signaling pathways and cell cycle regulation. Functional analyses to validate the transcriptomics results demonstrated that the symbiont increases host density hence providing a fitness advantage. Comparative transcriptomics shows gene expression modulation of a ciliate caused by its bacterial endosymbiont thus revealing new adaptive advantages of the symbiosis. Caedibacter taeniospiralis apparently increases its host fitness via manipulation of metabolic pathways and cell cycle control.


Assuntos
Gammaproteobacteria/fisiologia , Paramecium/genética , Paramecium/microbiologia , Simbiose , Transcriptoma , Regulação da Expressão Gênica , Redes e Vias Metabólicas , Paramecium/fisiologia , Fenótipo , Análise de Sequência de RNA
12.
Genome Announc ; 6(3)2018 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-29348333

RESUMO

Caedibacter taeniospiralis is an obligate endosymbiont living in the cytoplasm of Paramecium tetraureliaC. taeniospiralis causes the so-called killer trait, eliminating intraspecific competitors of its host when released into the medium by the concerted action of the unusual protein structure R-body (refractile body) in addition to an as-yet-unknown toxin.

13.
Appl Environ Microbiol ; 82(24): 7236-7247, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27742680

RESUMO

In the past 10 years, the number of endosymbionts described within the bacterial order Rickettsiales has constantly grown. Since 2006, 18 novel Rickettsiales genera inhabiting protists, such as ciliates and amoebae, have been described. In this work, we characterize two novel bacterial endosymbionts from Paramecium collected near Bloomington, IN. Both endosymbiotic species inhabit the cytoplasm of the same host. The Gram-negative bacterium "Candidatus Bealeia paramacronuclearis" occurs in clumps and is frequently associated with the host macronucleus. With its electron-dense cytoplasm and a distinct halo surrounding the cell, it is easily distinguishable from the second smaller symbiont, "Candidatus Fokinia cryptica," whose cytoplasm is electron lucid, lacks a halo, and is always surrounded by a symbiontophorous vacuole. For molecular characterization, the small-subunit rRNA genes were sequenced and used for taxonomic assignment as well as the design of species-specific oligonucleotide probes. Phylogenetic analyses revealed that "Candidatus Bealeia paramacronuclearis" clusters with the so-called "basal" Rickettsiales, and "Candidatus Fokinia cryptica" belongs to "Candidatus Midichloriaceae." We obtained tree topologies showing a separation of Rickettsiales into at least two groups: one represented by the families Rickettsiaceae, Anaplasmataceae, and "Candidatus Midichloriaceae" (RAM clade), and the other represented by "basal Rickettsiales," including "Candidatus Bealeia paramacronuclearis." Therefore, and in accordance with recent publications, we propose to limit the order Rickettsiales to the RAM clade and to raise "basal Rickettsiales" to an independent order, Holosporales ord. nov., inside Alphaproteobacteria, which presently includes four family-level clades. Additionally, we define the family "Candidatus Hepatincolaceae" and redefine the family Holosporaceae IMPORTANCE: In this paper, we provide the characterization of two novel bacterial symbionts inhabiting the same Paramecium host (Ciliophora, Alveolata). Both symbionts belong to "traditional" Rickettsiales, one representing a new species of the genus "Candidatus Fokinia" ("Candidatus Midichloriaceae"), and the other representing a new genus of a "basal" Rickettsiales According to newly characterized sequences and to a critical revision of recent literature, we propose a taxonomic reorganization of "traditional" Rickettsiales that we split into two orders: Rickettsiales sensu stricto and Holosporales ord. nov. This work represents a critical revision, including new records of a group of symbionts frequently occurring in protists and whose biodiversity is still largely underestimated.


Assuntos
Alphaproteobacteria/isolamento & purificação , Citoplasma/microbiologia , Paramecium/microbiologia , Rickettsiaceae/isolamento & purificação , Alphaproteobacteria/classificação , Alphaproteobacteria/genética , Alphaproteobacteria/fisiologia , Paramecium/fisiologia , Filogenia , Rickettsiaceae/classificação , Rickettsiaceae/genética , Rickettsiaceae/fisiologia , Simbiose
14.
Curr Microbiol ; 72(6): 723-32, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26894821

RESUMO

Large-scale studies on obligate bacterial endosymbionts may frequently require preliminary purification and enrichment protocols, which are often elaborate to set up and to evaluate, especially if the host organism is a protist. The purpose of this study was to develop a real-time PCR-based strategy and employ it for assessing two of such enrichment protocols for Holospora caryophila, hosted by the ciliate Paramecium. Four SSU rRNA gene-targeted real-time PCR assays were designed, which allowed to compare the amount of H. caryophila to other organisms, namely the host, its food bacterium (Raoultella planticola), and free-living bacteria present in the culture medium. By the use of the real-time PCR assays in combination, it was possible to conclude that the "cell fractionation" protocol was quite successful in the enrichment of the symbiont, while the "Percoll gradient" protocol will need further refinements to be fully repeatable. The proposed approach has the potential to facilitate and encourage future studies on the yet underexplored field of bacterial endosymbionts of ciliates and other protists. It can also find valuable applications for experimental questions other than those tested, such as fast and precise assessment of symbiont abundance in natural populations and comparison among multiple coexisting symbionts.


Assuntos
Bactérias/isolamento & purificação , Técnicas de Tipagem Bacteriana/métodos , Cilióforos/microbiologia , Simbiose , Bactérias/classificação , Bactérias/genética , Fenômenos Fisiológicos Bacterianos , Biodiversidade , Cilióforos/fisiologia , DNA Bacteriano/genética , Filogenia , RNA Ribossômico 16S/genética , Reação em Cadeia da Polimerase em Tempo Real
15.
PLoS One ; 11(1): e0145743, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26731731

RESUMO

Recently, the family Midichloriaceae has been described within the bacterial order Rickettsiales. It includes a variety of bacterial endosymbionts detected in different metazoan host species belonging to Placozoa, Cnidaria, Arthropoda and Vertebrata. Representatives of Midichloriaceae are also considered possible etiological agents of certain animal diseases. Midichloriaceae have been found also in protists like ciliates and amoebae. The present work describes a new bacterial endosymbiont, "Candidatus Fokinia solitaria", retrieved from three different strains of a novel Paramecium species isolated from a wastewater treatment plant in Rio de Janeiro (Brazil). Symbionts were characterized through the full-cycle rRNA approach: SSU rRNA gene sequencing and fluorescence in situ hybridization (FISH) with three species-specific oligonucleotide probes. In electron micrographs, the tiny rod-shaped endosymbionts (1.2 x 0.25-0.35 µm in size) were not surrounded by a symbiontophorous vacuole and were located in the peripheral host cytoplasm, stratified in the host cortex in between the trichocysts or just below them. Frequently, they occurred inside autolysosomes. Phylogenetic analyses of Midichloriaceae apparently show different evolutionary pathways within the family. Some genera, such as "Ca. Midichloria" and "Ca. Lariskella", have been retrieved frequently and independently in different hosts and environmental surveys. On the contrary, others, such as Lyticum, "Ca. Anadelfobacter", "Ca. Defluviella" and the presently described "Ca. Fokinia solitaria", have been found only occasionally and associated to specific host species. These last are the only representatives in their own branches thus far. Present data do not allow to infer whether these genera, which we named "stand-alone lineages", are an indication of poorly sampled organisms, thus underrepresented in GenBank, or represent fast evolving, highly adapted evolutionary lineages.


Assuntos
Alphaproteobacteria/fisiologia , Paramecium/microbiologia , Simbiose , Águas Residuárias/parasitologia , Alphaproteobacteria/classificação , Alphaproteobacteria/genética , Evolução Molecular , Interações Hospedeiro-Patógeno , Hibridização in Situ Fluorescente , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Paramecium/classificação , Filogenia , RNA Bacteriano/química , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Especificidade da Espécie
16.
Front Microbiol ; 7: 2084, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28066397

RESUMO

According to text book definition, parasites reduce the fitness of their hosts whereas mutualists provide benefits. But biotic and abiotic factors influence symbiotic interactions, thus under certain circumstances parasites can provide benefits and mutualists can harm their host. Here we addressed the question which intrinsic biotic factors shape a symbiosis and are crucial for the outcome of the interaction between the obligate intranuclear bacterium Holospora caryophila (Alphaproteobacteria; Rickettsiales) and its unicellular eukaryotic host Paramecium biaurelia (Alveolata; Ciliophora). The virulence of H. caryophila, i.e., the negative fitness effect on host division and cell number, was determined by growth assays of several P. biaurelia strains. The performances of genetically identical lines either infected with H. caryophila or symbiont-free were compared. Following factors were considered as potentially influencing the outcome of the interaction: (1) host strain, (2) parasite strain, and (3) growth phases of the host. All three factors revealed a strong effect on the symbiosis. In presence of H. caryophila, the Paramecium density in the stationary growth phase decreased. Conversely, a positive effect of the bacteria during the exponential phase was observed for several host × parasite combinations resulting in an increased growth rate of infected P. biaurelia. Furthermore, the fitness impact of the tested endosymbionts on different P. biaurelia lines was not only dependent on one of the two involved strains but distinct for the specific combination. Depending on the current host growth phase, the presence of H. caryophila can be harmful or advantageous for P. biaurelia. Thus, under the tested experimental conditions, the symbionts can switch from the provision of benefits to the exploitation of host resources within the same host population and a time-span of less than 6 days.

17.
Microb Ecol ; 70(2): 484-97, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25704316

RESUMO

We report the characterization of the bacterial consortium associated to Euplotes focardii, a strictly psychrophilic marine ciliate that was maintained in laboratory cultures at 4 °C after its first isolation from Terra Nova Bay, in Antarctica. By Illumina genome analyser, we obtained 11,179 contigs of potential prokaryotic origin and classified them according to the NCBI's prokaryotic attributes table. The majority of these sequences correspond to either Bacteroidetes (16 %) or Proteobacteria (78 %). The latter were dominated by gamma- (39 %, including sequences related to the pathogenic genus Francisella), and alpha-proteobacterial (30 %) sequences. Analysis of the Pfam domain family and Gene Ontology term variation revealed that the most frequent terms that appear unique to this consortium correspond to proteins involved in "transmembrane transporter activity" and "oxidoreductase activity". Furthermore, we identified genes that encode for enzymes involved in the catabolism of complex substance for energy reserves. We also characterized members of the transposase and integrase superfamilies, whose role in bacterial evolution is well documented, as well as putative antifreeze proteins. Antibiotic treatments of E. focardii cultures delayed the cell division of the ciliate. To conclude, our results indicate that this consortium is largely represented by bacteria derived from the original Antarctic sample and may contribute to the survival of E. focardii in laboratory condition. Furthermore, our results suggest that these bacteria may have a more general role in E. focardii survival in its natural cold and oxidative environment.


Assuntos
Euplotes/genética , Adaptação Fisiológica , Regiões Antárticas , Genômica/métodos , Consórcios Microbianos
18.
Eur J Protistol ; 51(1): 98-108, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25635695

RESUMO

Previous studies on bacterial symbionts of ciliates have shown that some symbionts can be maintained relatively well under standard laboratory conditions whereas others are frequently lost, especially when the host is cultivated at a high division rate. In this study, the variation in infection level by the endosymbiont Holospora caryophila within its host population Paramecium octaurelia was investigated in response to three alimentary treatments and a subsequent starvation phase. The response of the ciliates was determined as a nearly exponential growth rate with different slopes in each treatment, proportional to the amount of food received. The initial infection level was higher than 90%. After 24 days of exponential host's growth, the prevalence remained stable at approximately 90% in all treatments, even after a subsequent starvation phase of 20 days. However, at intermediate time-points in both the feeding and the starvation phase, fluctuations in the presence of the intracellular bacteria were observed. These results show that H. caryophila is able to maintain its infection under the tested range of host growth conditions, also due to the possibility of an effective re-infection in case of partial loss.


Assuntos
Holosporaceae/fisiologia , Paramecium/microbiologia , Análise de Variância , Paramecium/crescimento & desenvolvimento , Simbiose , Fatores de Tempo
19.
Parasit Vectors ; 7: 203, 2014 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-24774858

RESUMO

BACKGROUND: Flagellates of the family Trypanosomatidae are obligate endoparasites, which can be found in various hosts. Several genera infect insects and occur as monoxenous parasites especially in representatives of Diptera and Hemiptera. These trypanosomatid flagellates probably share the worldwide distribution of their hosts, which are often infested by large numbers of endoparasites. Traditionally, their taxonomy was based on morphology, host origin, and life cycle. Here we report the characterization of a trypanosomatid infection detected in a protozoan, a ciliate collected from a polluted freshwater pond in a suburb of New Delhi (India). METHODS: Live observations and morphological studies applying light, fluorescence and transmission electron microscopy were conducted. Molecular analyses of host and parasite were performed and used for phylogenetic reconstructions and species (host) or genus level (parasite) identification. RESULTS: Although the morphological characteristics were not revealing, a high similarity of the trypanosomatids 18S rRNA gene sequence to Herpetomonas ztiplika and Herpetomonas trimorpha (Kinetoplastida, Trypanosomatidae), both parasites of biting midges (Culicoides kibunensis and Culicoides truncorum, respectively) allowed the assignment to this genus. The majority of the host population displayed a heavy infection that significantly affected the shape of the host macronucleus, which was the main site of parasite localization. In addition, the growth rate of host cultures, identified as Euplotes encysticus according to cell morphology and 18S rRNA gene sequence, was severely impacted by the infection. CONCLUSIONS: The host-parasite system described here represents a recent example of free-living protists acting as environmental reservoirs for parasitic eukaryotic microorganisms.


Assuntos
Euplotes/parasitologia , Macronúcleo , Trypanosomatina/isolamento & purificação , Animais , Reservatórios de Doenças , Interações Hospedeiro-Parasita , Filogenia , RNA Ribossômico 18S/genética , Trypanosomatina/classificação , Trypanosomatina/genética
20.
Sci Rep ; 3: 3305, 2013 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-24264310

RESUMO

Among the bacterial symbionts harbored by the model organism Paramecium, many still lack a recent investigation that includes a molecular characterization. The genus Lyticum consists of two species of large-sized bacteria displaying numerous flagella, despite their inability to move inside their hosts' cytoplasm. We present a multidisciplinary redescription of both species, using the deposited type strains as well as newly collected material. On the basis of 16S rRNA gene sequences, we assigned Lyticum to the order Rickettsiales, that is intensely studied because of its pathogenic representatives and its position as the extant group most closely related to the mitochondrial ancestor. We provide conclusive proofs that at least some Rickettsiales possess actual flagella, a feature that has been recently predicted from genomic data but never confirmed. We give support to the hypothesis that the mitochondrial ancestor could have been flagellated, and provide the basis for further studies on these ciliate endosymbionts.


Assuntos
Alphaproteobacteria/genética , Alphaproteobacteria/classificação , Alphaproteobacteria/ultraestrutura , Paramecium/microbiologia , Filogenia , RNA Ribossômico 16S/química , RNA Ribossômico 16S/genética , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...